چند نامساوی شعاع عددی برای عملگرهای فضای هیلبرت
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی
- author نسرین داورپناه
- adviser اسدا الله نیکنام محمد جانفدا
- Number of pages: First 15 pages
- publication year 1391
abstract
در این پایان نامه سه نامساوی شعاع عددی برای عملگرهای فضای هیلبرت ارایه می کنیم.این نامساوی ها از نامساوی های شعاع طیفی برای عملگرهای فضای هیلبرت الهام گرفته شده اند به همین دلیل در فصل مجزایی به این نامساوی ها نیز پرداخته شده است. در فصل های بعدی با استفاده از ویژگی های شعاع عددی این نامساوی ها برای شعاع عددی ارایه و اثبات می شوند و در ادامه کاربردهایی از این نامساوی ها بیان می شود.
similar resources
نامساوی های شعاع اقلیدوسی در فضای هیلبرت
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بواس-بلمن و بومبری است. همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار nتایی روی فضای هیلبرت بحث می کنیم.
نامساوی های شعاع اقلیدسی در فضای هیلبرت
هدف از این پایان نامه بررسی انواع کران های بالا برای شعاع اقلیدسی عملگرهای خطی کران دار n تایی روی فضای هیلبرت است. که این کار با بکارگیری چند تعمیم از نامساوی بسل مانند نامساوی بوس بلمن و بومبری است همچنین درباره نرم و شعاع عددی عملگرهای خطی کران دار n تایی روی فضای هیلبرت بحث می کنیم
15 صفحه اولنامساوی هایی در مورد شعاع عملگری اقلیدسی و شعاع عددی عملگرها بر یک فضای هیلبرت
چکیده ندارد.
15 صفحه اولنامساوی های کلارکسون ناجا به جایی برای عملگرهای فضای هیلبرت
کلارکسون نشان داد که اگر 1?p<? و q= p/(p-1) ، آنگاه برای هر v, uدر l_p داریم: الف) اگر 1?p?2 1 ) ?(u+v)/2 ?_p^q+?(u-v)/2 ?_p^q?( ?1/2 ?u?_p^p+1/2 ?v?_p^p)?^?(q/p) 2 ) ?(u+v)/2 ?_p^p+?(u-v)/2 ?_p^p?1/2(?u?_p^p+?v?_p^p) ب) برای 2?p?? عکس نامساوی های فوق برقرارند. فرض کنید b,a دو عملگر از یک فضای هیلبرت باشند، برای p- نرمهای شتن ، مک کارتی نشان داد نامساوی های کلارکسون به صورت زیر برقرارند...
تعمیم هایی از نامساوی بوهر برای عملگرهای فضای هیلبرت
نامساوی کلاسیک بوهر توسط اچ.بوهر در سال 1924 ارائه شد.ما در این رساله تعمیم هایی از این نامساوی برای عملگرهای خطی و کران دار روی یک فضای هیلبرت تفکیک پذیر h رابیان می کنیم. علاوه بر این روشی را بیان می کنیم که این نامساوی رابه مضربی از عملگرهاتعمیم می دهد و سچس با استفاده از این روش چند نامساوی نظیر نامساوی بوهر را به دست می آوریم.در واقع ایده ی اصلی این رساله تبدیل مسائل در نظریه عملگر به مسائ...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023